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Abstract
Already in elementary quantum mechanics on the Tn inequivalent
representations exist and one has to use reducible representations to implement
some automorphisms unitarily. A special example is the quantum Hall system
on the T 2. There exists a preferable representation for all B but in the passage to
several particles the Pauli principle can be formulated in a physically satisfying
way only if the commutant is abelian, i.e. for integer magnetic monopoles.

PACS numbers: 03.65.−w, 03.70.+k, 05.30.−d, 73.43.Cd

1. Introduction

The equivalence of the two formulations of quantum mechanics, namely the Schrödinger
equation and Heisenberg’s commutation relations for finitely many particles seems to be
guaranteed by von Neumann’s theorem [1]. He showed that all irreducible representations of
Heisenberg’s commutation relations (in Weyl form) are unitarily equivalent to that proposed
by Schrödinger. The theorem does not hold for infinitely many degrees of freedom and
it is an essential feature of quantum field theory that different physical situations demand
different representations. But also when the global structure of R

n is changed the theorem
is not applicable any more. In this note we will study the problems one meets in elementary
quantum mechanics on Tn, n = 1, 2.

(a) If the algebra of observables is not simple but has a centre there are many inequivalent
irreducible representations, which assign different numerical values to the elements of the
centre. A faithful representation is reducible. But also if the algebra has a trivial centre
there are many inequivalent representations, irreducible and reducible ones, and both can
be faithful.

(b) The time evolution will, in general, not be inner. If we want to represent it by a unitary
operator we have to turn to a reducible representation.

The essential problem arises when we want to describe several fermions on Tn. Of course,
in reality we work on R

n. Tn only works as a finite approximation in order to get a well-
defined thermodynamic limit when the size of the torus goes to infinity. Whether physics
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is described on Tn in a satisfying way can only be checked by examing whether it gives the
correct thermodynamic limit in which the size of the system and the particle number tends to
infinity. In order to describe several particles we take the tensor products of the representations
and then apply the Pauli principle to the vectors. We apply this principle to various situations:
On the T1 this method only works in a physically satisfying way, if we deal with an irreducible
representation. If we deal with a reducible representation we have to combine soldering of the
centre with anti-symmetrization. We can also describe fermions on the torus by a modified
CAR algebra (algebra of anti-commuting creation and annihilation operators).

On the T2 we consider free particles in a constant magnetic field and construct the
corresponding representations. For every strength of the magnetic field it is possible to
construct irreducible one-particle representations. In these representations we can study the
degeneracy of the Landau levels. This degeneracy is highly discontinuous for varying B. Only
for an integer number of monopoles does the degeneracy converge in the thermodynamic limit
to the correct particle density and can therefore be interpreted as a filling factor for the finite
system. On the other hand, for every B there exist rather natural reducible representations
that are continuous in the magnetic field. The special mathematical role of integer magnetic
fields appears as the fact that the commutant (see section 2B and 3B) is abelian. The abelian
commutant of several particles can be soldered, i.e. the commutants of different particles
can be identified without spoiling the trivial commuation relations in the tensor product of
the commutants. If the one-particle commutant is not abelian this is not possible anymore.
Looking for a replacement of the soldering procedure, we can restrict the possible states over
the n-fold tensor products by fixing the state over the commutants and applying the Pauli
principle only to this restricted class of states. This gives a finite filling factor which is
nevertheless discontinuous in B and therefore not in accordance with the physically desirable
result. Thus, if we apply the methods that worked for T1 to describe several fermions, we note
that only for an integer number of magnetic monopoles [2] do we obtain the correct filling
factor. Therefore, we are able to formulate the physics of a particle on a torus in a constant
magnetic field in the language of C∗ algebras with time automorphism. But the definition
of the corresponding second quantized CAR algebra works so far only for integer magnetic
monopoles. How far a meaningful and satisfying deformation is possible for other B is the
subject of further investigation.

2. Motion on T1

2.1. Classical motion

The motion on a circle with a constant force E shows even at the classical level an unusual
feature. The Hamiltonian

HE = L2

2
− Eϕ {ϕ,L} = 1 (2.1)

is not globally defined on T1, but dH is and leads to the canonical flow �E ,

L(t) = L(0) + E · t
(2.2)

ϕ(t) = ϕ(0) + tL(0) + E
t2

2
= ϕ(0) + tϕ̇(0) + E

t2

2
.

There does not exist a constant of the motion, since HE is only locally defined.
In physics a constant electric field on a circle can only be realized by a magnetic field

increasing linearly in time. Thus another description of the situation is given by

HM = 1
2 (L + Et)2. (2.3)
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HM is globally defined and leads to a time evolution

L(t) = L(0)
(2.4)

ϕ(t) = ϕ(0) + tL(0) + E
t2

2
= ϕ(0) + tϕ̇(0) + E

t2

2
.

The flow �M(t) : (ϕ,L)→ (ϕ(t), L(t)) is a one-parameter family of canonical
transformations, but not a group, �M(t1) · �M(t2) �= �M(t1 + t2) and especially �M(t) ◦
�M(−t) �= 1. HM is not even piece-wise constant.

HE and HM lead to the same motion of ϕ(t) and they are gauge equivalent. A gauge flow
�G generated by

HG = −Eϕ �G(t)(ϕ,L) = (ϕ,L + tE) (2.5)

intertwines between them

�M(t) ◦�G(t) = �E(t). (2.6)

�G(t) does not commute with �M(t) and restores the group property.

2.2. First quantization

The quantum mechanical observables of a particle on T1 form the Weyl algebra WT generated
by

W(m,α) = ei(mϕ+αL) m ∈ Z α ∈ R. (2.7)

It has the centre

Z = {W(0, α); α ∈ 2πZ}. (2.8)

Correspondingly, there exists a one-parameter family of inequivalent irreducible
representations�γ , γ ∈ [0, 1), with

�γ (e2π iL) = e2π iγ (2.9)

with γ the Bohm–Aharonov phase [3]. The spectrum of �γ (L) is Z + γ .
The flows �E, �M and �G (2.2), (2.4) and (2.5) generate automorphisms on WT .

However, �E and �G do not induce automorphisms of �γ (WT ), since they do not leave
the centre element-wise invariant. But in an irreducible representation the elements of the
centre are represented by multiples of unity and cannot change under automorphisms. Only
�M(t) = �E(t) ◦ �G(−t) induces an automorphism of WT, but not a one-parameter group.
For �E to induce an automorphism one has to go to a faithful representation. This can be
obtained by � = ∫ 2π

0 dγ�γ (2.10) and it is clear that �E(t) which moves in �γ to γ + Et

will induce an automorphism group. � will be represented in a Hilbert space
∫ 2π

0 dγHγ

and this representation is equivalent to the standard representation �s of the Weyl algebra
{W(m,α),m, α ∈ R} on L2(R) restricted to WT . Since �s is faithful so is its restriction to
WT , but this restriction is no longer irreducible. To substantiate these claims we exhibit these
restrictions in terms of wavefunctions.

2.3. Wave functions

It is known that �γ (L) is self-adjoint on the domain Dγ in the Hilbert space L2(T 1) ≡
L2([0, 2π), dx)

Dγ = {ψ ∈ L2(T 1), ψ ′ ∈ L2(T 1), lim
ε→0

ψ(2π − ε) = e2π iγψ(0)}. (2.10)
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If the vector |n〉 corresponds to the wavefunction ei(n+γ )ϕ ∈ Dγ , then we have the representation

�γ (eimϕ)|n〉 = |n +m〉 �γ (eiαL)|n〉 = ei(n+γ )α|n〉. (2.11)

Thus all �γ act in the same Hilbert space L2(T 1) = �2. Here eigenvectors of L belonging to
different �γ are not orthogonal as in the reducible representation �. To realize that we have

to turn to a bigger space. � = ∫ 1
0 dγ�γ acts in the Hilbert space H = �2 ⊗ L2(T 1) with

elements
∑ |n〉⊗ψn(2πγ ), such that eiαL is the multiplication operator eiα(n+γ ). This Hilbert

space H can be identified with L2(R) by cutting R into pieces of length 1, R � p = [p] + (p),
[p] � p < [p + 1], [p] ∈ Z, (p) =: γ ∈ [0, 1) and with

ψ̃(p) = ψ̃([p] + γ )≡ |[p]〉 ⊗ ψ[p](2πγ ) ≡ ψ([p], 2πγ ). (2.12)

This bijection is an isometry because∫ +∞

−∞
dp|ψ̃(p)|2 =

∑
[p]

∫ 1

0
dγ |ψ̃([p] + γ )|2.

The actions of einϕ and eiαL correspond to the standard representations

eiαLψ̃(p) = eiαpψ̃(p)⇔ eiαLψ(n, 2πγ ) = eiα(n+γ )ψ(n, 2πγ )

eiβϕψ̃(p) = ψ̃(p + β)⇔ eiβϕψ(n, 2πγ ) = ψ([n + γ + β], (2π(γ + β)) (2.13)

= ψ(n + [γ + β], 2π(γ + β))

which coincides for β ∈ Z with (2.11).
It remains to be shown that in the representation � the automorphisms (2.2), (2.4) and

(2.5) are unitarily implemented.
HM generates the unitaries

UM(t) = exp

[
−i
∫ t

0

i

2
(L + Et ′)2 dt ′

]
= exp

[
−i
t

2
(L2 + EtL) − iE

t3

6

]
. (2.14)

The last factor as a pure c-number does not contribute to the automorphism and can be dropped.

UG(t) = eiEtϕ (2.15)

which according to (2.13) is well defined. Together they generate

Utψ̃(p) = UG(t)UM(t)ψ̃(p) = exp

[
−i
t

2
(p2 + Etp)

]
ψ̃(p + Et). (2.16)

In order to verify (2.6) one readily checks

eiβϕUt ψ̃(p) = Uteiβ(ϕ+pt+Et2/2)ψ̃(p)
(2.17)

eiαLUt ψ̃(p) = Uteiα(p+Et)ψ̃(p).

The phase factor cancels out and Ut induces a one-parameter group of automorphisms, though
Ut1+t2 = Ut1 · Ut2 only modulo a phase factor.

Remark 1. In an irreducible representation �γ we identified L with a self-adjoint operator.
Similarly we can identify ϕ with a bounded self-adjoint (multiplication operator) and interpret
HE in this sense. This operator HE = L2/2 + Eϕ has a purely discrete spectrum, since
according to the Golden–Thompson–Symanzik inequality

Tr e−β(L
2/2+Eϕ) � Tr e−βL

2/2 e−βEϕ � e−βEπ Tr e−βL
2/2 <∞.

Thus the time evolution generated by eit (L2/2+Eϕ) is quasi-periodic and has no resemblance of
�E to (2.2).
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Remark 2. The reducible representation corresponds to the kq-representation of a particle in
a periodic potential, periodic in [0, 2π] in L2(R) [4]. Similarly, the Bohm–Aharonov phase
as an effect of an electric field [5] is interpreted here as describing the flow through different
irreducible representations.

Remark 3. Here we observe a different way of symmetry breaking.

Definitions

(i) A symmetry α is an automorphism of a C∗-algebra A.
(ii) A dynamical symmetry α of a dynamical system (A, τt ), where τt is the time evolution,

is a symmetry with α ◦ τ = τ ◦ α.
(iii) The dynamical symmetry α is spontaneously broken by a state ω over A, if ω = ω ◦ τ �=

ω ◦ α.
(iv) The symmetryα is spontaneously destroyed by a representation� if α is an automorphism

of �(A) but cannot be extended to the weak closure �(A)′′.
(v) The symmetry α is completely destroyed by a representation�, if it cannot be restricted

to �(A).
Explanations

(iii) Sinceω is time invariant τ is unitarily implemetable whereas α may or may not. For finite
dimensional matrix algebras it certainly is and already then definition (iii) can be realized:
Let �σ1, �σ2 be two sets of Pauli matrices, A = {1, �σ1, �σ2}. An example is provided by

τt = ad exp[i�σ1 �σ2t] α = ad exp[iγ (�σ1z + �σ2z)]

ω(a) = Tr
1 + σ1x

2
· 1 + σ2x

2
a.

(iv) Here we have the situation where α cannot be unitarily implemented because otherwise it
could be extended to �(A)′′. For obvious reasons we call it ‘anti-Wignerian’. This does
not happen for matrix algebras where the weak closure does not go beyond norm closure
but can happen in quantum field theory.

(v) This happens if A has a centre on which α acts nontrivially and � is not faithful. It
occurs for τ in the Weyl algebra over T1 but also already in finite dimensions: Consider
A = (1, �σ, τ3), τ

2
3 = 1. α(1, �σ , τ3) = (1, �σ ,−τ3) cannot be realized in �(1, �σ, τ3) =

(1, �σ , 1).

2.4. Second Quantization

The standard procedure to do the second quantization on T1 is to consider the CAR algebra
over L2(T 1). But this means that we already choose an irreducible representation �γ , and
this choice determines the action of the Weyl operators as automorphisms on the a( f ).

For finitely many fermions N we can consider as a representation
n⊗
i=1

�(i)
γ

for the symmetrized Weyl operators acting on the totally anti-symmetric
∧n

i=1 H(i)
γ .

If we start with the reducible representation � = ∫ dγ�γ on �2 ⊗ L2(T 1), then
(�2 ⊗ L2(T 1)) ∧ (�2 ⊗ L2(T 1)) would allow both particles to be in the L = 0 state by
anti-symmetrizing in L2(T1) ⊗ L2(T1). To prevent this we can work in

(�2 ∧ �2)⊗ L2(T 1).
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Pictorially we have to solder the two spaces together. In terms of physics soldering means
that though changing in time the Bohm–Aharonov phase γ has to be the same for all
particles. For many fermions this soldering is conveniently carried out in second quantization.
This is accomplished by working with the algebra A = CAR(�2) ⊗ C(T 1) rather than
CAR(�2 ⊗ L2(T 1)).

Therefore the anti-commutation relations read

[a∗nc(γ ), amc
′(γ )]+ = c(γ )c′(γ )δnm

(2.18)
[anc(γ ), amc′(γ )]+ = 0 n,m ∈ Z c(γ ), c′(γ ) ∈ C(T 1).

The actions of the operators eiαL, eimϕ can be transferred to inner automorphisms of A by

eiαLanc(γ )e
−iαL= eiα(n+γ )anc(γ )

(2.19)
eimϕanc(γ )e−imϕ = an+mc(γ )

whereas eiβϕ defines in the same way

eiβϕanc(γ )=a[n+β] c(β + γ ) (2.20)

a gauge automorphism on the algebra, i.e. an automorphism that is not inner and gives rise
to inequivalent representations (this is what gauge transformations do). Obviously the anti-
commutation relations (2.18) are left invariant. Since the time evolution is composed of eiβϕ

and exp
[
i
∫ t

0 dt ′(L + t ′E)2 dt ′
]

it also induces an automorphism on the CAR algebra that is

not inner. Note that a∗1c(γ )a
∗
1g(γ ) = a∗21 c(γ )g(γ ) = 0 such that one cannot fill two electrons

into the state L = 1.

Remark 4. That eiβϕ cannot define an inner automorphism is due to the fact that [n + β] is
not continuous and there is no identification anc(γ + 2π) = an+1c(γ ). Thus eiβϕ cannot be a
quasifree automorphism af → aUβf , f from some Hilbert space and Uβ a strongly continuous
unitarily group in it.

3. The quantum Hall effect

As a next example we study fermions on T2. If they move freely, T 2 = T 1 ⊗ T 1 and also
eiHt = eiH1t ⊗ eiH1t , therefore the analysis can be completely carried over. But if H does not
factorize as happens in the quantum Hall effect, i.e. when we consider particles in a constant
magnetic field new features will appear.

The quantum Hall effect is fairly well understood on the few-particle level [6] as well as
on the level of quantum field theory [7] from the geometrical viewpoint. But the passage from
one level to the other is not sufficiently under control. Of course, we have the description
of many-particle wavefunctions [8] that explain some of the essential features. Also in [11]
a thermodynamic limit is carried through, where the particles are confined by a harmonic
potential that can be interpreted to be the result of a background charge and at the same time
defines an electric field that induces a Hall current. But we would like to decouple the two facts
and control the thermodynamic limit in other settings also. The usual approach is to confine the
particles to some region in space, usually a box, whose volume increases proportional to the
particle number. Then one has to choose boundary conditions for the Hamiltonian, in general
Dirichlet, Neumann or periodic boundary conditions. These periodic boundary conditions
are especially favourable. On the one hand, the calculation is usually easy, but in addition
space translation still commutes with time evolution and therefore they are tailormade to allow
currents. Thus we consider the motion on T 2 as being worth examining. As for particles on T1
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we will first describe the classical motion of particles in a constant magnetic field. Then we
will do first quantization, i.e. define the one-particle Weyl algebra with its automorphisms and
representation. Then we will consider the second quantization on L(R2) and compare the
possibilities of second quantization on L2(T 2).

3.1. Classical motion

As for the one-dimensional torus the relevant features already occur at the classical level,
since all relevant Poisson brackets are c-numbers and therefore the first quantization is
straightforward.

The canonical momenta p1,2 have to be replaced by the gauge-invariant velocities
v1,2 = p1,2 ± Bϕ2,1/2, which are canonically conjugate

{v1, v2} = B. (3.1)

Another independent canonical pair is offered by the centre of the Larmor orbits (for E = 0)

ϕ̄1,2 = ϕ1,2 ± 1

B
v2,1 {ϕ̄1, ϕ̄2} = − 1

B
{ϕ̄i, vk} = 0. (3.2)

As in T1 the Hamiltonian HE with a nonvanishing electric field is defined only locally, whereas
dHE exists globally. We assume that E points in the 1-direction so that

HE = 1

2

(
v2

1 + v2
2

)
+ E
(
ϕ̄1 − v2

B

)
E > 0. (3.3)

The corresponding equations of motion

v̇1 = Bv2 + E v̇2 = −Bv1 ˙̄ϕ1 = 0 ˙̄ϕ2 =
E

B
(3.4)

generate the flow �E(t)

(ϕ̄1, ϕ̄2, v1, v2)→ (ϕ̄1, ϕ̄2 + tE/B, cv1 + s(v2 + E/B), c(v2 + E/B)− s(v1 − E/B)) (3.5)

where c = cosBt , s = sinBt .
Taking into account that the constant electric field can be generated by a time-dependent

vector potential A = −Et an alternative description is furnished by

HM = 1
2

(
(v1 + Et)2 + v2

2

)
(3.6)

which generates a flow �M (t)

(ϕ̄1, ϕ̄2, v1, v2)→ (ϕ̄1, ϕ̄2, cv1 + s(v2 + E/B)− Et, c(v2 + E/B)− s(v1 − E/B)) . (3.7)

We see that for this flow HM is globally defined, but�M (t) again does not form a group. Only
combined with the gauge transformation�G(t)

(ϕ̄1, ϕ̄2, v1, v2)→ (ϕ̄1, ϕ̄2 + tE/B, v1 + tE, v2) (3.8)

generated locally by

HG = −ϕ1E = (−ϕ̄1 + v2/B)E (3.9)

we get the group�E(t)

�E = �G ◦�M. (3.10)
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3.2. First quantization

Though at the classical level the situation is very similar to the one-dimensional T 1 at the
quantum level, different features appear for different values of B. The classical Poisson
brackets are readily expressed as (multiplication) commutators in the Weyl form

eiαv1 eiβv2 = e−iαβBeiβv2 eiαv1 α, β ∈ R

(3.11)
eimϕ̄1 einϕ̄2 = ei(mn)/Beinϕ̄2eimϕ̄1 m,n ∈ Z.

Depending on whether B is rational or irrational, we have different representations.

(a) If B = (2π)−1g1/g2, gi ∈ Z, then the algebra has a centre (the operators in the algebra
which commute with all others)

Z = {eimϕ̄1·g1 , einϕ̄2·g1}. (3.12)

In this case the algebra is equivalent to

Mg1×g1 ⊗ Z ⊗ {eiαv1 , eiβv2
}

(3.13)

where Mg1×g1 is a full matrix algebra of dimension g1 and possesses for the ϕ̄-part
g1-dimensional irreducible matrix representations, e.g. (up to unitary equivalence)

(eiϕ̄1)rs = δrs exp

[
i
2π · rg2

g1

]
r, s = 1, . . . , g1

(3.14)
(eiϕ̄2)rs = δr,s+1 r, s = 1, . . . , g1 mod g2.

If B is irrational the centre is trivial and {eimϕ̄1 , einϕ̄2} allows irreducible representations
which are faithful, namely e.g. on L2(T1),

�a(e
inϕ̄2) = exp

[
−in

1

B
pϕ̄1

]
�a(e

imϕ̄1) = eimϕ̄1 . (3.15)

pϕ̄1 = 1
i
∂
∂ϕ̄1

with periodic boundary conditions. Now the commutant of {eimϕ̄1 , einϕ̄2}
is trivial and therefore this representation is irreducible. Performing the gauge
automorphisms1α,β , 1T :

{eimϕ̄1 , einϕ̄2} 1α,β→ {eim(ϕ̄1+α), ein(ϕ̄2+β)}
(3.16)

{eimϕ̄1 , einϕ̄2} 1T→ {exp
[
i
(〈

1
0

∣∣T ∣∣mn 〉 ϕ̄1 +
〈
0
1

∣∣T ∣∣mn 〉 ϕ̄2
)]}

with

T =
(
a b

c d

)
a, b, c, d ∈ Z ad − bc = 1

∣∣m
n

〉 ∈ Z
2

we obtain inequivalent irreducible representations. Integrating over them we obtain a
faithful reducible representation�.
These irreducible representations can also be described in the appendix in the language
of wavefunctions.

Therefore in the sense of the possible ways of symmetry breaking, the gauge
transformation ϕ̄1,2 → ϕ̄1,2 + α1,2 is completely destroyed if B is rational and
spontaneously destroyed if B is irrational because in the latter case �a(einϕ̄2) changes
its spectrum and thus the transformation is not unitarily implementable.
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(b) There also exists a reducible representation on L2(T2), namely

�b(eiϕ̄1) = exp

[
i

(
x +

1

2B
py

)]
(3.17)

�b(eiϕ̄2) = exp

[
i

(
y − 1

2B
px

)]
.

This algebra�b(A)′′ is type II1. The tracial state is furnished by the identity function |1〉
on T2

〈1|einϕ̄1eimϕ̄2 |1〉 = δn0δm0. (3.18)

and its commutant �b(A)′ (i.e. the operators in L2(T 2) that commute with all operators
in �b(A)′′) is given by

�b(A)′ =
{

exp

[
i

(
x − 1

2B
py

)]
, exp

[
i

(
y +

1

2B
px

)]}
. (3.19)

Note that this representation also works, if 2πB is rational. In this case �b is reducible
and contains a centre Z = �b(A)′′ ∩�b(A)′

�b(A)′′ ∩�b(A)′ =
{

exp

[
ig1

(
x − 1

2B
py

)]
, exp

[
ig1

(
y +

1

2B
px

)]}
= Z �= c 1.

(3.20)

Varying over B the representation �b is strongly continuous in B for 1/B ∈ (0, 1) and
periodic in 2π/B. Since we have in mind to perform the thermodynamic limit where B
has to be replaced by BL2, we approach the limit of continuity.

(c) There exists yet another representation [9] where continuity is preserved, namely on
L2(R) where A is considered as a subalgebra of the Weyl algebra on R [9]

�c(einϕ̄1) = eixn/
√
B

(3.21)
�c(e

imϕ̄2) = e−impx/
√
B.

The commutant�c(A)′ is given by{
e2π inx

√
B, e2π impx

√
B
}′′
. (3.22)

The elements of both�c(A) and�c(A)′′ are strongly continuous in 1/B ∈ (0,∞) and in
the thermodynamic limit B→ BL2, L→∞, we have

st- lim
B→∞

eixn/
√
Beimpx/

√
B = 1 for the operators in �c(A)

w- lim
B→∞

e2π in
√
Bxe2π im

√
Bpx = δn0δm0 for the operators in �c(A)′

(3.23)

st- lim exp

[
ix

[n
√
B]√
B

]
= einx

st- lim exp

[
ipx

[m
√
B]√
B

]
= eimpx .

The representation has the advantage that the correct filling factor B · 2π(=ρ(x)(2π)2
in (3.30)) appears as a characteristic of the representation, namely as the coupling
constant [10].

It is defined as follows: take a vector ψ from the representation space H of
M = �(A)′′ and define the projections P ′ψ ∈ M′ (resp. Pψ ∈ M) by Mψ = P ′ψH
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(resp. M′ψ = PψH). Furthermore, assume that there are normalized traces τ (resp. τ ′)
over M (resp. M′) with τ |Z = τ ′|Z . Then von Neumann found that

c = τ (Pψ)/τ ′(P ′ψ) (3.24)

is independent of ψ and thus is a characteristic of the relation between M and M′.
Furthermore ∃ ψ = cyclic for M⇒ c � 1, ∃ ψ = separating for M⇒ c � 1.

Examples for c (3.25)

1. �a :M = Mg1×g1 ⊗ Z, M′ = 1 ⊗ Z. Here the traces on M and M′ are unique up to a
state on Z that has to coincide. Take ψ = ei ⊗ v, ei any vector of Cg1, v a cyclic vector
for Z. Then P ′ψ = 1, Pψ = |ei〉〈ei | ⊗ 1 and c = τ (Pψ)/τ

′(P ′ψ) = 1/g1. Thus for 2πB
integer = g1 the filling factor c−1 gives the desired result, for 2πB = g1/g2, g2 �= 1, it is
too big.

2. �b: Here the vectorψ = |1〉 is cyclic and separating for M and M′, i.e. Mψ =M′ψ =
H⇒ Pψ = P ′ψ = 1⇒ c = 1.

3. �c: Take 2πB � 1 (for 2πB � 1 M ↔ M′) and for ψ the characteristic function
χ[0,1/

√
B] ∈ L2(R). Then

〈
ψ|e2π inx

√
Be2π ipx

√
B |ψ
〉
= δn,0δm,0 (3.26)

and ψ implements the tracial state over M′. Therefore, it is separating for M′ and
P ′ψ = 1. For M ψ is cyclic but not separating and the projection operator

Pψ = χ[0,1/
√
B]∪[2π

√
B,2π

√
B+1/

√
B]∪... ∈M (3.27)

satisfies PψH =M′|ψ〉. If M′ is type II1 algebra (i.e. 2πB irrational), so is M =M′′

and there exists a unique trace over M. The trace is shift invariant and when applied to
Pψ gives the ratio of the intervals where Pψ = 1 to the gaps between them. Thus

c = τ (Pψ) = 1

2πB
. (3.28)

If B/2π = g1/g2 is rational, then

M = Mg1×g1 ⊗ Z M′ = Mg2×g2 ⊗ Z,

and again, with Z = {ein
√
g1 x}′′

c = g2/g1.

The automorphisms corresponding to�M (3.6) are inner and therefore unitarily implementable
in all three representations �a, �b, �c.

The automorphisms�G and�E are not inner and therefore are not unitarily implementable
in �a (compare (3.16)). The representations �b and �c are the tracial representation resp.
quasi-equivalent (i.e. the state 〈1|�b(einϕ̄1+mϕ̄2)|1〉 can be obtained by a density operator over
�c(M)′′) to the tracial representation. There the automorphisms�G and �E can be extended
to the weak closure and therefore are unitarily implementable in �b, resp. �c.
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3.3. Second quantization

One of the desiderata of the second quantization is that for fermions we get the correct filling
factor for the Landau levels. In the thermodynamic limit when T 2 → R

2 the representation of
the Weyl algebra is essentially unique and the second quantization works in the standard way.

The ground states of the fermions for the time evolution �M with E = 0 is given by the
quasi-free state

ω(a(f )a†(g)) = 〈f |Pvx,vy ⊗ Ax̄,ȳ |g〉 (3.29)

where Pvx ,vy is the projection on the ground state in the H(vx, vy) space whereasAx̄,ȳ is some
positive operator �1 in the H(x̄, ȳ) space. The maximal filling factor is obtained for A = 1.
If we write P ⊗A as an integral kernel in the H(x, y) space, K(x, y), then K(x, x)= ρ(x) gives
the particle density. With

1x̄ = lim
E→∞

(
1
(
E − e−(x̄

2+ȳ2)
)

this integral kernel can be evaluated [11] to be

K(x, x) = B

2π
. (3.30)

If we now turn to the second quantization on the torus, we have to distinguish between different
cases.

(a) B = g1/2π , g1 ∈ Z.
Here we can apply the methods of T1. Either we introduce creation and annihilation
operators over the representation space Ha and accept that the gauge automorphisms are
not defined on the CAR algebra. Or we can choose the representation�b. In this case the
algebra contains a centre, but the commutant is not abelian. The centre can be soldered
but it is not clear how to solder the remaining part of the commutant.
In the representation�c the commutant is again abelian and we can solder it in analogy to
(2.18). Now the one-particle Hilbert space can be written as H = L2(R) ⊗ sCg1⊗L2(Z)
and the creation and annihilation operators satisfy with f ∈ L2(R), v ∈ Cg1 , c(z) ∈
L∞(Z),

[a(f ⊗ v)c(z), a†(f ′ ⊗ v′)c′(z)]+ = 〈f |f ′〉〈v|v′〉 · c(z)c′(z). (3.31)

If the vacuum |0〉 is defined by

a(ψ)|0〉 = 0

then ∏
k∈I

a†(f ⊗ vk)ck(z)|0〉 = 0 (3.32)

if |I | > g1. Therefore the filling density g1/(2π)2 = B/2π . (We take into account that
our torus has length 2π .)
The time evolution �M extends to an automorphism over this algebra and has the form

τta(f ⊗ vk)c(γ1, γ2) = a(Utf ⊗ eitE/Bvk)c(γ1, γ2 + tE/2π). (3.33)

(b) Take B = 2πg1/g2, g1, g2 ∈ Z, g2 �= 1, g2 < g1.
An irreducible representation �a acts on a Hilbert space H = L2(R) ⊗ Cg1 . If we do a
second quantization over this Hilbert space, then we obtain creation operators a†(f ⊗ v),
v ∈ Cg1 and get a filling density

g1

(2π)2
= Bg2

2π
(3.34)
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which can become arbitrarily big, independent of the strength B. This suggests that we
have to start with a representation of the one-particle algebra, where the filling factor
already arises as a natural parameter, namely �c.

(c) We take arbitrary B and start with the representation �c. In the Hilbert space Hc we can
find vectors ψ1, . . . ψk , k � g1/g2, such that ψ i implements the tracial state on M′ and
satisfy Pψi · Pψj = δijPψi , e.g. we can choose ψi = χ[(i−1)/

√
B,i/
√
B]. Then we consider

the vector ψ̄ in the Hilbert space H̄ = (⊗L2(R)n)

ψ̄ =
∑

(−1)π ψπ(1) ⊗ . . . ψπ(n). (3.35)

This procedure only works, if n � g1/g2. In addition, it has the advantage that the
set of permitted states ψ̄ is mapped into itself under unitary operators that implement
one-particle automorphisms. Especially for the time evolution �M with E = 0 we can

find a sequence ψ̄Lin L2
(
T
(B/L2)

L

)
that defines the thermodynamic limit state.

But the restriction on the set ψ̄ has also a severe shortcoming: it is not stable under linear
superposition nor is it stable under unitary operators of

⊗
s{�c(W)}(n). Therefore ground

states with respect to Hamiltonians that include particle interactions will, in general, not
belong to this class of vectors. The set of states that is stable under unitary operators of
M′′

n is characterized by its action on M′
n = (⊗M′

1 . . .⊗M′
n) ∨ {Uπ}′′, i.e.

〈ψ̄ |M ′1 ⊗ . . .M ′n|ψ̄〉 =
∏
〈ψi |M ′i |ψi〉 =

∏
τ (M ′i ). (3.36)

We check if we can find vectors satisfying (3.36) in L2
(
T NL
)
, even if N  B/L2.

For simplicity we assume that 2πB is rational and we have already soldered the centre.
Therefore we start with a one-particle Hilbert space Hg1·g2 with B(H) = M ⊗M′,
M ≈ Mg1×g1 , M′ ≈ Mg2×g2 . For integer L we consider the sequence

M ≈ Mg1L
2×g1L

2 M′ ≈ Mg2×g2 . (3.37)

For Hg2 we choose a basis ē1, . . . ēg2 . Then ψ̄ is of the form

ψ̄ =
∣∣∣∣ ∑
i1...iN

∑
ei1 ⊗ . . . eiN ⊗ ēj1 ⊗ . . . ējn

〉
=
∣∣∣∣∑

I

eI ⊗ ēI
〉

(3.38)

with 1 � ji � g2 and the restriction 〈eI |eI ′ 〉 = δII ′ .
The Pauli principle has to be expressed as a restriction on the permitted class of eI. We
demand that eI has to be anti-symmetric in Hg1·L2

. Therefore(
g1 · L2

N

)
� gN2 . (3.39)

If we assume that N scales like k L2, then (3.39) becomes in the limit L→∞
g1 ln g1 − k ln k − (g1 − k) ln(g1 − k) � k ln g2. (3.40)

For g2= 1, g1= 2πB this implements k � 2πB, the correct filling factor. But, in general,
k will depend on both g1 and g2 and in the limit g2→∞ (B becoming irrational)

kcrit = g1

g2
· e.

Interestingly enough the condition (3.36) implies that the filling factor remains finite,
i.e. this method is closer to reality than doing a second quantization on irreducible
representations but it still does not give the correct result (3.34). This means that either
we find a better way than (3.36) of soldering the commutant, when it is not abelian, or we
accept that on the torus the magnetic monopoles that produce the magnetic field have to
be quantized.
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Appendix

We shall now exhibit the vectors of the representation space by functions f (ϕ1, ϕ2) ∈ L2(T 2).
There it is customary to use a nonsymmetrical gauge

v1 = p1 + Bϕ2 v2 = p2 ϕ̄1 = ϕ1 +
p2

B
ϕ̄2 = −

p1

B
pi = −i

∂

∂ϕi
.

(A.1)

The action of the Weyl operators in L2(T2) are

eiαv1f (ϕ1, ϕ2) = eiαBϕ2f (ϕ1 + α, ϕ2)

eiβv2f (ϕ1, ϕ2) = f (ϕ1, ϕ2 + β)
(A.2)

eimϕ̄2f (ϕ1, ϕ2) = f (ϕ1 −m/B, ϕ2)

einϕ̄1f (ϕ1, ϕ2) = einϕ1f (ϕ1, ϕ2 + n/B).

Here α, β ∈ R, m,n ∈ Z, so the infinitesimal generators (A.1) for ϕ̄1 need not exist but for
vj they have to. We are interested in the lowest level of 1

2

(
v2

1 + v2
2

)
which corresponds to f ’s

satisfying

(v1 − iv2)f = 0. (A.3)

To solve this equation it is convenient to introduce the half-sided Fourier series

f (ϕ1, ϕ2) =
∑
k∈Z

eikϕ1bk(ϕ2) (A.4)

which changes (A.3) into

(k + Bϕ2)bk(ϕ2) = ∂

∂ϕ2
bk(ϕ2) (A.5)

which is solved by

bk(ϕ2) = e−
1
2 (k+Bϕ2)

2
ck. (A.6)

We still have to make sure that these functions are in the domain of self-adjointness of the
vj (or equivalently of the pj). Since −i ∂/∂ϕ is self-adjoint for f (2π) = eiγ f (0) there is
no problem with v1 since (A.4) implies f (0, ϕ2) = f (2π, ϕ2). For v2 we have to require
f (ϕ, 2π) = eiγ (ϕ1)f (ϕ1, 0) or for (A.6)∑

k

ckeikϕ1{e−k2/2eiγ (ϕ1) − e−(k+2πB)2/2} = 0. (A.7)

Now we specialize to B = g1/2πg2, gi ∈ Z+ and see how functions of the form (A.6) can
give the representation�a. Exchanging (1↔ 2) we have the requirements

(a) eiϕ̄2fj = e2π ij/g1fj , j = 1, 2, . . . g1.
For (A.6) this means∑

k

ckeik(ϕ,−1/B)e−(k+βϕ2)
2/2 =
∑
k

ckei(kϕ1+2πj/g1)e−(k+Bϕ2)
2/2.

Thus we have to restrict ourselves to those k for which there exists n ∈ Z such that
−2πkg2/g1 = 2πj/g1+2πnor to the setSn(j) = {k ∈ Z : ∃ n ∈ Z with −kg2 = j+ng1}.
Note that ∀ k ∈ Z there exists exactly one pair ( j, n) such that this relation holds. For us
j is fixed so we have to add the smaller set Sn(j) to n.
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(b) e−iϕ̄1fj = fj+1(mod g1).∑
k∈Sn(j)

ckeiϕ1(k−1)e−(k+B(ϕ2−1/B))2/2 =
∑

k∈Sn(j+1)

ckeiϕ1ke−(k+Bϕ2)
2/2.

The left side equals∑
k+1∈Sn(j)

ck+1eiϕ1k e−(k+Bϕ2)
2/2

so equality holds if ck is independent of k and

{k : −(k + 1)g2 = j + ng1} = {k : −kg2 = j + 1 +mg1}
or g2 = 1 + g g1 for some g ∈ Z.
We still have to see for which g2 (A.7) can be satisfied. It requires∑

k∈Sn(j)
eikϕ1

{
e−k

2/2 eiγ (ϕ1) − e−(k+g1/g2)
2/2
}
= 0.

For g2 = 1 this condition can be satisfied by eiγ (ϕ1) = eig1ϕ1 , since k ∈ Sn(j)⇒ k − g1 ∈
Sn(j). For g2 = 1 + g g1, g �= 0, there is no chance that this holds for all ϕ1. In particular
for ϕ1 = 0 all terms are positive and even for

f (x) =
∑
k∈Z

e−(k+x)2/2 < f (0) ∀ x ∈ (0, 1).

This calculation gives an explicit verification of the claim made in [2], namely that the
Schrödinger equation on T2 requires B = Z/2π . This does not mean that for g2 �= 1 the
operators (A.2) cannot be represented in some L2(T2):

If we move to the representation �a for B = 2πg1/g2, g2 �= 1, we can represent it in
L2(T2)g2. Introducing ϕ2g2 = ϕ̃2 we take the same representation on [0, 2π]× [0, 2πg2] with
the necessary scaling, i.e.

eiαvf (ϕ1, ϕ̃2) = eiαg1ϕ̃2f (ϕ1 + α, ϕ̃2) = eiαBϕ2f (ϕ1 + α, ϕ̃2).

Comparing�a for b = 2πg1 with that for B = 2πg1/g2

�a,B= 2πg1(e
inϕ1, eimϕ2) is non-degenerate,

whereas

�a,B= 2πg1/g2(e
inϕ1, eimϕ2) is g2 times degenerate.
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